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1. Pointwise Convergence

Pointwise Convergence:
Let {f,} be a sequence of real valued functions defined on an interval I. If for each x € I the
limit lim f,(z) exists then a function f defined on I by

n—oo

lim f,(z) = f(z)

is called the limit of {f,} as n tends to oo and the sequence of functions {f,} is said to be
point-wise convegent to f.

Note: Equivalenly we can define point-wise convergence as follows.

Let {f.} be a sequence of real valued functions defined on an interval I and f also be a
function defined on I. If for each € > 0 and each x € I there exists some positive integer m,
depending on choice of x and € such that

|fu(z) — f(z)] <€, whenever, n >m

then the sequence of functions {f,} is said to be point-wise convegent to f. Also f is called
point-wise limit of {f,} as n tends to co and it is written as,

lim f,(2) = f(x)

n—oo

2. Uniform Convergence

Unifrom Convergence:




Let {f.} be a sequence of real valued functions defined on an interval I and f also be a
function defined on I. If for each € > 0 and every x € I there exists some positive integer m,
independent of choice of x in I, such that

|fu(z) — f(x)| <€, whenever, n >m

then the sequence of functions {f,} is said to be uniformly convegent to f. Also f is called
uniform limit of {f,} as n tends to oo.

3.  State and prove Cauchy’s criteria for uniform convergence of a sequence
of functions.

Cauchy’s criteria for uniform convergence of a sequence of functions:
A sequence of functions {f,} defined on [a, b] converges uniformly in [a,b] on [a, b] if and only
if every € > 0 and for all x € [a, b], there exists an integer N such that,

|fn+p(x) _fn(x)| < 67 vn 2 NJ p > ]-

Proof:
First, suppose {f,} of functions converges uniformly on [a, b] to the limit function f.

Then, for any given ¢ > 0 and every choice of x € [a,b], there exists some positive integer
N, independent of x, such that,

|fu(z) — f(2)] < %, whenever, n > N
For every p > 1 since n + p > N we have,
Furn(@) = F@)] < 5
Therefore, for n > N and p > 1, we have

|fn+p(l‘) - fn(‘r)| = |fn+p(x) - f(i(]) + f(x) - fn(x)|
< farp() = f(@)] + | f(2) = ful2)]
et

o lfasp(z) — fu(x)le, whenever n > N, p>1

Conversely, suppose for any given ¢ > 0 and for all x € [a, b], there exists an integer N such
that,

| frap(x) — fu(z)| <€, YR =N, p>1---(1)

Therefore, By Cauchy’s general princial for convergence, for each x € [a, b], sequence of real
numbers { f,(z)} converges to a limit, say f(x). Therefore, {f,(z)} converges point-wise to f.

If we fix any n in (1) and let p — oo then we have f,,, = f

Therefore, we have

|fu(z) — f(z)| <€, whenever, n > N Vz € [a, D]
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Hence, {f.(z)} conveges uniformly to f.

4. Let {f,} be a sequence of functions such that lim f,(z) = f(x), = € [a,]
n— o0
and let

M, = sup |fu(z) = f()]

z€(a,b]

Then f,, — f uniformly on [q,b] if and only if M, — 0 as n — co.

Proof:
Let f, — f uniformly on [a, b].

Therefore, for a given € > 0 there exists a positive integer N such that,
|fu(z) = f(z)| <€, V>N, Yz € [a,b]
Since M, = sup,e(op [fo(®) — f(2)], we have,
Mn <€, VYn> N
Therefore

M, —-0asn— oo

Conversely, suppose, M,, — 0 as n — oo. Therefore, for any ¢ > 0 there exists a postitive
integer N such that,
M, <e, VYn>N

Therefore,
sup |fu(z) — f(z)| <€, V=N

z€[a,b]

Therefore,
|fu(z) — f(2)| <€, VR =N, Yz € [a,b]

Hence, f, — f uniformly on [a, b].

5. Uniform convergence of series of functions.

Uniform convergence of series of functions.
A series ) f, of functions is said to converge uniformly on an inverval [a,b] if the sequence

{S,} of its partial sums defined by
i=1

converges uniformly on [a, b].

6. State and prove Weistrass’ s M-test.




Weistrass’ s M-test
A series Y f,, of functions is uniformly (and absolutely) convergent on [a, ] if there exists a
convergent series » . M, of postive numbers such that for all z € [a, 0],

()| < My, ¥n

Proof:
Let > M, be a convergent series of positive numbers such that,

()] < My, ¥n

By Cauchy’s criteria convergence of series of numbers, > M,, is convergent iff for a given € > 0
there exists some postitve integer N such that,

| M1 + Mo+ -+ Myyy| <€, Vo 2 N, p>1

Now,

a1 (2) + faa () + -+ fagp(@)] < [fra (@) + [frpr (@) + - 4 [frgp ()]
< Mn+1 + Mn+2 +oe 4+ Mn+p
<

’fn+1(x>+fn+1(x)++fn+p(x>’ €, V?”L}N, p> 1

Hence, series ) f,, of functions is uniformly (and absolutely) convergent on [a, b].

[ 7. State and prove Abel’s test.

Abel’s test.

If b, (z) is a positive monotonic decreasing function of n for each fixed value of z in the interval
la,b] and b,(z) is bounded for all values of n and x concerned, and if the series »_ u,(x) is
uniformly convergent on [a, b], then so also is the serie Y b, (x)u,(x).

Proof:

Since, b, (x) is bounded for all values of n and z, there exists a postive number K, independent
of x and n, such that, for all x € [a,b] and n =1,2,...

0<by(z) < K

Now, if > u,(z) is a uniformly convergent series then for a given € > 0 there exists some
positive integer N such that,

n+p ¢
r < T \V/ 2 N’ 2 1
Z u () 7o P

r=n-+1

Hence, by Abel’s lemma, we get

n+p n+q
- b (@) bin@) max |7 wa)
r=n+1 r=n+1




<K< Vn>=N,p>1, x€la,b

K’
n+p
S Z u-(z) <e, Vn =2 N, p>1, x € [a,b]
r=n+1

Hence, > b,(x).u, () is uniformly convergent on [a, b]

8. State and prove Dirichlet’s test.

Dirichlet’s test

If b,(z) is a monotonic function of n for each fixed value of = in the interval [a,b] and b, (x)
tends uniformly to zero for a < x < b, and if there is a number K > 0 independent of x and
n, such that for all values of x in [a, ],

)| < K, Vn

then the series > b, (x)u,(x) is uniformly convergent on [a, b].

Proof:

As b, (x) converges uniformly to 0, and for any € > 0 there exists some positive integer N,
independent of x, such that,

€
< — >
b, ()] < Ve VYn > N
Let S, = zn: u,(z). Therefore,
r=1
ISy < K, ¥n, Yx € [a,]]
Now,
n—+p
Z by ( = bp41(2)n1(2) + bng2 (2 nr2(2) + - + by p(T)np(2)
r=n-+1
= bpy1(2) (Sng1 — Sn) + bny2(x) (Sni2 — Spy1) +--- + bn—i—p(x) (Sn-HD — 5p)
= —bys1(2)Sn + (bnr1(2) = by2(2))Sny1 + (bny2(®) — bnys(w))Snya + - ..
+ (bn-&-p—l(x) - bn-&-p(x))Sn—irp—l + bn+p(37)8n+p
n+p—1
= Z (0r(z) = br11(2)) Sy — b1 () Sn + bpyp(2) Sty
r=n+1
n+p n+p—1
> be(x)a, ( > (be(@) = brsa (2)] + b (2 )|+|bn+p($)|> (. [Snl < K)
r=n+1 r=n+1
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= K (|bas1(2) = basp(@)] + (b1 (2)] + [bop(2)])

< K(|bn+1($)| + |bn+p(x)| + |bn+1(x>| + |bn+p(x)|)

4K
n-+p
Z by (x)us(x)| <€, Yn=N,p>1, x € la,b
r=n+1

Hence, by Cauchy’s criteria b, (x).u,(x) is uniformly convergent on [a, b|.

b, (x) is monotonic.)



