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1. Pointwise Convergence

Pointwise Convergence:
Let {fn} be a sequence of real valued functions defined on an interval I. If for each x ∈ I the
limit lim

n→∞
fn(x) exists then a function f defined on I by

lim
n→∞

fn(x) = f(x)

is called the limit of {fn} as n tends to ∞ and the sequence of functions {fn} is said to be
point-wise convegent to f .

Note: Equivalenly we can define point-wise convergence as follows.

Let {fn} be a sequence of real valued functions defined on an interval I and f also be a
function defined on I. If for each ε > 0 and each x ∈ I there exists some positive integer m,
depending on choice of x and ε such that

|fn(x)− f(x)| < ε, whenever, n > m

then the sequence of functions {fn} is said to be point-wise convegent to f . Also f is called
point-wise limit of {fn} as n tends to ∞ and it is written as,

lim
n→∞

fn(x) = f(x)

2. Uniform Convergence

Unifrom Convergence:
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Let {fn} be a sequence of real valued functions defined on an interval I and f also be a
function defined on I. If for each ε > 0 and every x ∈ I there exists some positive integer m,
independent of choice of x in I, such that

|fn(x)− f(x)| < ε, whenever, n > m

then the sequence of functions {fn} is said to be uniformly convegent to f . Also f is called
uniform limit of {fn} as n tends to ∞.

3. State and prove Cauchy’s criteria for uniform convergence of a sequence
of functions.

Cauchy’s criteria for uniform convergence of a sequence of functions:
A sequence of functions {fn} defined on [a, b] converges uniformly in [a, b] on [a, b] if and only
if every ε > 0 and for all x ∈ [a, b], there exists an integer N such that,

|fn+p(x)− fn(x)| < ε, ∀n > N, p > 1

Proof:
First, suppose {fn} of functions converges uniformly on [a, b] to the limit function f .

Then, for any given ε > 0 and every choice of x ∈ [a, b], there exists some positive integer
N , independent of x, such that,

|fn(x)− f(x)| < ε

2
, whenever, n > N

For every p > 1 since n+ p > N we have,

|fn+p(x)− f(x)| < ε

2

Therefore, for n > N and p > 1, we have

|fn+p(x)− fn(x)| = |fn+p(x)− f(x) + f(x)− fn(x)|
6 |fn+p(x)− f(x)|+ |f(x)− fn(x)|

<
ε

2
+
ε

2
∴, |fn+p(x)− fn(x)|ε, whenever n > N, p > 1

Conversely, suppose for any given ε > 0 and for all x ∈ [a, b], there exists an integer N such
that,

|fn+p(x)− fn(x)| < ε, ∀n > N, p > 1 - - - (1)

Therefore, By Cauchy’s general princial for convergence, for each x ∈ [a, b], sequence of real
numbers {fn(x)} converges to a limit, say f(x). Therefore, {fn(x)} converges point-wise to f .

If we fix any n in (1) and let p→∞ then we have fn+p → f

Therefore, we have

|fn(x)− f(x)| < ε, whenever, n > N ∀x ∈ [a, b]
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Hence, {fn(x)} conveges uniformly to f .

4. Let {fn} be a sequence of functions such that lim
n→∞

fn(x) = f(x), x ∈ [a, b]

and let
Mn = sup

x∈[a,b]
|fn(x)− f(x)|

Then fn → f uniformly on [a, b] if and only if Mn → 0 as n→∞.

Proof:
Let fn → f uniformly on [a, b].

Therefore, for a given ε > 0 there exists a positive integer N such that,

|fn(x)− f(x)| < ε, ∀ n > N, ∀x ∈ [a, b]

Since Mn = supx∈[a,b] |fn(x)− f(x)|, we have,

Mn < ε, ∀n > N

Therefore
Mn → 0 as n→∞

Conversely, suppose, Mn → 0 as n → ∞. Therefore, for any ε > 0 there exists a postitive
integer N such that,

Mn < ε, ∀n > N

Therefore,
sup
x∈[a,b]

|fn(x)− f(x)| < ε, ∀ n > N

Therefore,
|fn(x)− f(x)| < ε, ∀ n > N, ∀x ∈ [a, b]

Hence, fn → f uniformly on [a, b].

5. Uniform convergence of series of functions.

Uniform convergence of series of functions.
A series

∑
fn of functions is said to converge uniformly on an inverval [a, b] if the sequence

{Sn} of its partial sums defined by

Sn =
n∑

i=1

fn(x)

converges uniformly on [a, b].

6. State and prove Weistrass’ s M-test.
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Weistrass’ s M-test
A series

∑
fn of functions is uniformly (and absolutely) convergent on [a, b] if there exists a

convergent series
∑
Mn of postive numbers such that for all x ∈ [a, b],

|fn(x)| 6Mn, ∀n

Proof:
Let

∑
Mn be a convergent series of positive numbers such that,

|fn(x)| 6Mn, ∀n

By Cauchy’s criteria convergence of series of numbers,
∑
Mn is convergent iff for a given ε > 0

there exists some postitve integer N such that,

|Mn+1 +Mn+2 + · · ·+Mn+p| < ε, ∀n > N, p > 1

Now,

|fn+1(x) + fn+1(x) + · · ·+ fn+p(x)| 6 |fn+1(x)|+ |fn+1(x)|+ · · ·+ |fn+p(x)|
6Mn+1 +Mn+2 + · · ·+Mn+p

∴ |fn+1(x) + fn+1(x) + · · ·+ fn+p(x)| < ε, ∀n > N, p > 1

Hence, series
∑
fn of functions is uniformly (and absolutely) convergent on [a, b].

7. State and prove Abel’s test.

Abel’s test.
If bn(x) is a positive monotonic decreasing function of n for each fixed value of x in the interval
[a, b] and bn(x) is bounded for all values of n and x concerned, and if the series

∑
un(x) is

uniformly convergent on [a, b], then so also is the serie
∑
bn(x)un(x).

Proof:
Since, bn(x) is bounded for all values of n and x, there exists a postive number K, independent
of x and n, such that, for all x ∈ [a, b] and n = 1, 2, . . .

0 6 bn(x) 6 K

Now, if
∑
un(x) is a uniformly convergent series then for a given ε > 0 there exists some

positive integer N such that,

n+p∑
r=n+1

ur(x) <
ε

K
, ∀n > N, p > 1

Hence, by Abel’s lemma, we get

n+p∑
r=n+1

br(x).ur(x) 6 bn+1(x) max
q=1,2,...,p

∣∣∣∣∣
n+q∑

r=n+1

ur(x)

∣∣∣∣∣
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< K
ε

K
, ∀n > N, p > 1, x ∈ [a, b]

∴,
n+p∑

r=n+1

ur(x) < ε, ∀n > N, p > 1, x ∈ [a, b]

Hence,
∑
bn(x).un(x) is uniformly convergent on [a, b]

8. State and prove Dirichlet’s test.

Dirichlet’s test
If bn(x) is a monotonic function of n for each fixed value of x in the interval [a, b] and bn(x)
tends uniformly to zero for a 6 x 6 b, and if there is a number K > 0 independent of x and
n, such that for all values of x in [a, b],∣∣∣∣∣

n∑
r=1

ur(x)

∣∣∣∣∣ 6 K, ∀n

then the series
∑
bn(x)un(x) is uniformly convergent on [a, b].

Proof:
As bn(x) converges uniformly to 0, and for any ε > 0 there exists some positive integer N ,
independent of x, such that,

|bn(x)| 6 ε

4K
, ∀n > N

Let Sn =
n∑

r=1

ur(x). Therefore,

|Sn| 6 K, ∀n, ∀x ∈ [a, b]

Now,

n+p∑
r=n+1

br(x).ur(x) = bn+1(x)un+1(x) + bn+2(x)un+2(x) + · · ·+ bn+p(x)un+p(x)

= bn+1(x) (Sn+1 − Sn) + bn+2(x) (Sn+2 − Sn+1) + · · ·+ bn+p(x) (Sn+p − Sn)

= −bn+1(x)Sn + (bn+1(x)− bn+2(x))Sn+1 + (bn+2(x)− bn+3(x))Sn+2 + . . .

+ (bn+p−1(x)− bn+p(x))Sn+p−1 + bn+p(x)Sn+p

=

n+p−1∑
r=n+1

(br(x)− br+1(x))Sr − bn+1(x)Sn + bn+p(x)Sn+p

∴

∣∣∣∣∣
n+p∑

r=n+1

br(x).ur(x)

∣∣∣∣∣ 6 K

(
n+p−1∑
r=n+1

|br(x)− br+1(x)|+ |bn+1(x)|+ |bn+p(x)|

)
(∵ |Sn| 6 K)
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= K (|bn+1(x)− bn+p(x)|+ |bn+1(x)|+ |bn+p(x)|) (∵ bn(x) is monotonic.)

6 K (|bn+1(x)|+ |bn+p(x)|+ |bn+1(x)|+ |bn+p(x)|)

= K
( ε

4K
+

ε

4K
+

ε

4K
+

ε

4K

)

< K
( ε

4K

)
, ∀n > N, p > 1, x ∈ [a, b]

∴

∣∣∣∣∣
n+p∑

r=n+1

br(x)ur(x)

∣∣∣∣∣ < ε, ∀n > N, p > 1, x ∈ [a, b]

Hence, by Cauchy’s criteria
∑
bn(x).un(x) is uniformly convergent on [a, b].
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